a2 United States Patent

Stefansson

US009135065B1

US 9,135,065 B1
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) PARALLEL PROCESSING OF

MULTIDIMENSIONAL ARRAYS

(75) Inventor: Halldor Narfi Stefansson, Natick, MA
(US)

(73) Assignee: The MathWorks, Inc., Natick, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 65 days.

(21) Appl. No.: 13/599,020

(22) Filed: Aug. 30,2012

Related U.S. Application Data
(60) Provisional application No. 61/529,736, filed on Aug.

31, 2011, provisional application No. 61/656,262,
filed on Jun. 6, 2012.

Int. CL.
GO6F 9/46
GO6F 9/50
U.S. CL
CPC
Field of Classification Search

USPC 718/102
See application file for complete search history.

(51)
(2006.01)
(2006.01)
(52)

.. GOGF 9/50 (2013.01)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0201721 Al* 82008 Littleetal.ccccoee. 718/106
2010/0023728 Al* 1/2010 El-Mahdyetal. 712/12
OTHER PUBLICATIONS

MathLabl, MATLAB V7 Function Reference: vol. 1 (A-E) Section
Arrayfun, Dec. 15, 1996, The MathWorks, Inc., p. 2-219.*

600 —q, COMMAND (610)

MathLab2, Creating Multidimensional The
MathWorks, Inc., p. 3.*

MathLab3, MATLAB V7 Function Reference: vol. 1 (A-E) Section
Functions—by Category, Dec. 15, 1996, The MathWorks, Inc., p.
1-30.*

University of British Columbia, Speedup tricks Section bsxfun, Sep.
21, 2008.*

MATLAB Function Reference Arithmetic Operators +—*+-"/\"", A',
Feb. 1, 2001, http://nf.ncl.org.au.

Co-pending U.S. Appl. No. 14/060,1 14 entitled “Parallel Processing
of Multidimensional Arrays” by Stefansson, filed Oct. 22, 2013, 70
pages.

Tursa, “MTIMESX—Fast Matrix Multiply with Multi-Dimensional
Support”, Matlab® Central, Nov. 30, 2009, 19 pages.

Wiki, “GFOR?”, http://wiki.accelereyes.com/wiki/index/php/GFOR,
May 27, 2010, 3 pages.

“ppeval: Description & requirements”, http://www.neuroimaging.
org.auw/twiki/pub/Soma/AppsStarpDoc/ppeval.pdf, Apr. 10, 2007, 7

pages.

Arrays, 2005,

* cited by examiner

Primary Examiner — Emerson Puente
Assistant Examiner — Steven Do
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

A device receives a command to initiate parallel processing.
The command includes an indication of a function that is to be
performed in connection with the parallel processing, and a
reference to a multidimensional array to which the function is
to be applied. The multidimensional array includes at least
three dimensions. The command also includes an indication
of one or more dimensions by which the multidimensional
array is to be partitioned. The device partitions the multidi-
mensional array, along the one or more dimensions, to divide
the multidimensional array into multiple blocks, each of the
multiple blocks representing a subset of the multidimensional
array. The device controls application of the function to the
multiple blocks to cause the function to be applied in parallel
to at least two blocks of the multiple blocks.

21 Claims, 13 Drawing Sheets

B = slicefun{fun, A, ‘Dim’, 1, ‘Blocksize’, 3, ‘Output’, {{20, 301}}

A1 | &z | &g | Bz | 95 | 816 | Bu7 | B1g | B9 | Brp
A 4 fun(Al:,1:3]
@21 | 822 | 823 | B¢ | Bo5 | A26 | 827 | 825 | Bz | B0 Al l): RESOURCE
TCE lpp] @31 | @32 | @30 | B | Bss | @36 [@a7 | Bas | 238 | Ba0
240
Agr | B4 | Baa | Qas | Ays | 846 | Qa7 | Bas | B0 | Bao
fun{A[:,4:6]
Ag1 | 85z | Bsa | A5 | Bss | @56 | @7 | Bsa | Bss | @50 (Al]l RE;%E;CE
v 8g1 | 62 | S63 | A2 | Aoy | Fee | Bov | Jes | Bes | Beo
ARRAY B 8y1 | 87z | 8ra | Bya | Brs | Gre | Brr | Grs | G | 1o LT
(20 30) 8e1 | Bg2 | Ba3 | Aaa | Bss | Ase | Bo7 | Bse | Bse | Bao un(aL.7:]: RESOURCE
660 £50-3
8ot | Boz | Boz | Aea | Bes | Boe | Boy | Sog | Ben | Ao
Ao | Boz | Boa | Sos | Bos | os | o7 | Bog | Boo | Boo
un(AL10:120 | ReaoURCE
T » 550-4
PARALLEL EXECUTION
BLOCKS (630} ARRAY A (620) REBULTS (650)

OF BLOCKS (640}

US 9,135,065 B1

Sheet 1 of 13

Sep. 15, 2015

U.S. Patent

SLINSHY

M

NOILLAOIXE
1HTIVHYd

!

AVHNOSHY

LINSE

ATHUNOSH

AOHNOSIY

A2HN0S3Y

—]

404

—

l "Old

ONVINNOD

M

Lonaun 9100
unjAele

LNBoHS

> ATIANTIAC

US 9,135,065 B1

Sheet 2 of 13

Sep. 15, 2015

U.S. Patent

0ve
401

02¢ - 20N JHANES

¢ 9Old

0t¢

HAOMIEN

[8]24
=204

018 - J0IAZ0 LNGNO

US 9,135,065 B1

Sheet 3 of 13

Sep. 15, 2015

U.S. Patent

09E OIE —
IOV -HILNI 930
NOLLYDINAWOD 1dLNO A0IA3A Lndnl

oLe
\ Sng

s - VS V43

391A30 . AHOWEN LINA

JOVHOLS NIVIA ONISSIION

€ Old

US 9,135,065 B1

Sheet 4 of 13

Sep. 15, 2015

U.S. Patent

¥ Old

ObF 0cy
ANIONI SALIING
NOLLNTIXE TWOIHAYHD

Oi¥
57 HOLIGH
SUC0TE WVHOVIA
plolont:

US 9,135,065 B1

Sheet 5 0of 13

Sep. 15, 2015

U.S. Patent

W-058
F3EN08THY

P2
NOILHOd

b2
NOILHOd

L-0FS
NOLLYHOd

AOLG
S8A20Hd

AV
FoAN0OSEY

A
NOLLRAGCd

L-0ES
NOLLHOd

Z-0LS
SE300Hd

1059
FOEN0SIY

u-0cy
NOLLHOd

¢-0es
NOILHOd

G 'Old

L-02G
NCILHOG

b-0LG
S8HA20Hd

0Fe
204

US 9,135,065 B1

Sheet 6 of 13

Sep. 15, 2015

U.S. Patent

(0vS)} SUD018 40

{0%0) SLINSTY {0Z9) ¥ AVHYY {0e9) $M0018
« NOLLODENE TTveiYd _
< P06% k
hE —
HOHNOSHY | (17,01 0wpuny
3 00 | S0 | 30 | O | 30 | S0r | ¥Wor | €0 | 20z | g
o7 s D6p | 66p | 36p | f6p | 30p | S0 | ¥Or | SO | 2683 | S —
)] : s2p | 29g | sop | voe | © zap | 1ep 098
b 308N0S3 [, v o8 | 69 | sep | 20 | 290 | s0e | ven | cop | 7eg | 1ep (e X 67)
g Olp | 6ip | 8ip | e | %e | e | e | Y | Zip | Hp g AVddY
o7 09p | 692 | 8% | 2 | %S | B | e | e | 9 | S
£-08%
-] 0 | 65 | 89p | 290 | 95e | sve | e | e | zoe | e
AVUNOSIE | (19: 5y)uny .
9 Orp | 6/ | 8vp | iFp | O | St | YPe | BV | SV | IV
0vc
07 Otp | 6Ep | 9Ep | {Ep | S5 | St f | €z | 283 | (e A' 9L
< nwdv”%mwnz] o | st | o2p | 2e | 920 | s20 | v2e | 22e | 22n | 122
AORNOSHY | (fe:y Yoy
o Olg | 6l | et | ip | 8k | SR plEep|ip | e

9 'OId

{{log ‘ozl} ‘anding, ‘¢ ‘ezisnoold,

W

(019} ONYWINGD

L, Y unjjungasis = g

> 009

US 9,135,065 B1

Sheet 7 of 13

Sep. 15, 2015

U.S. Patent

oy
[5¢]
[
o
[5¢]
[
(58]
[

sg | zie | te

e {37 ‘Unjjuniiese = g

|

{0L4) ONYIINGD

057
9 AVHYY
{0€4) NOILLNDTE A
,mmﬁw\m«i
6-05G _
H0HN083Y {Eeelung
o —_—
{ovs) __| ° A
SLINSHY ® =lol}
1-0%S _
SoHN083Y {*ledung

—1 %o | %2e | i%e |~ {(074) ¥ AVHNY

US 9,135,065 B1

Sheet 8 of 13

Sep. 15, 2015

U.S. Patent

{(Po:€ POICE 'POIETIC {po:ceo {(ya:eclg {rg:ecie g
{(Poiee yoiee Ze)Q {po:ceio {(yoieelg {(geit)e i
{(Poiee 2e 'pOEeiQ {po:ceio {(Zeig {(Foegle 9
{pgige 2eL ZeLla {(poieeio (zei)g {(zeit)e G
(Z&'1 'voiee 'voeeld AN (yoeelq {(poegle b
{(ze1L 'poiee TELIQ (gZeio (yoeely {(zeile e
(el Tl 'pOEEIQ (gZeio {(zeit)d {pocele Z

(Zet 'zel ‘zZetia (Zeio {ze1)g {zeiyle b
Ui 0} :mﬁmhmw SIUBLB|T Mwmwmwwﬂ Mwmwmwm MHWWMMM HI0IE peadl]
mwm awm owm owm @Mm

8 'OId

r 008

US 9,135,065 B1

Sheet 9 of 13

Sep. 15, 2015

U.S. Patent

088
D AVHHY
(OF8) NOILNDEXS A
TITIVHYA
- {0Z8) ONYIWWOD
i P — . NOILYHTAO XIMLYIN 3HOD
JOHENOSH (W-058)
NOISNZLXZ
NOILLONOA
7018
® - —
{0g6) __| ° 0vZ g Avidy
SLINSTN ° a0
1055 — '0I6
—t |
FOHNOSAH (1-058) Y AYHHY
NOISNDLX3
NCOILONMA *

US 9,135,065 B1

Sheet 10 of 13

Sep. 15, 2015

U.S. Patent

0o01
D AVYHY
(OF01) NOLLNDAXE
THTIVHY
{0Z0L) ONVIRINOD
woss e | ¢ NOILLYHIDO XIMEYIN 350D
FoHEN0S3Y {M-020L)
LXE WG
NOLITONIS
Z-0L0L
L — ,
(0s01) __| . 7 8 AVHUY
SLINSTY s 304
T | g o010t
V V
IOHNOSIH [(ocon) 1 v oAy
LXH WG
NOLITONIS +

US 9,135,065 B1

Sheet 11 of 13

Sep. 15, 2015

U.S. Patent

L1 "Old

LINS3d ONIS JHOLS 1 ANdAno

i

\.

LINST FTONIS OLNI SIS INIFINOD

J

)

7

SHOOTE OML L8VIT LY

| 40 NOLLADZEXE T3 7T1vHYd 40 SLINSEY JAIZ03Y

~

~— C8Ll

~— CGLiL

~ OFil

)

7

SYMO0TE OML L8V 1LY NO TdTIvvd
NI ALN0EX3 O NOILONNHE 48NV0 OL SM00TH
0L NOILONNA 30 NOILYDNddY TOHLINGD

~

i

AVHHY 40 SMO0TE FdILINW JLYEMD
OL (SINOISNIWIQ ONOTV AYHHEY NOLLLLYHYd

3

AVHHY NOLLILEYA OL {SINOISNIWIG / AvHyY
{ NOLLDNNH DNIGNTTIONI GNYWINOD "ONISSIDOY
1FTIVEY Y JLVLLING OL ONYIAINOD 3AZ03Y

~ 0t

~— G2l

~ 0iid

US 9,135,065 B1

Sheet 12 of 13

Sep. 15, 2015

U.S. Patent

¢l "Old

LIN93Y FTONIS FHOLS /7 LNdANO

i

LNSE FTONIS OLNI SLNSTIH ANIGNOD

\. J

i

e)

SANGWETE OML 1SVAT LY
| 40 NOINOEXE 137veYd 40 SLINSHW IAIS03Y

i

e)

SLINANTE OML LSVAT LV NO T3TIVHVd
NEAEN0EXE OL NOILONNL 3SNvD 0L SINIWETS
Ol NOLLONNAA 40 NOILYONddY TOHINGD

\. S

)

s “

AVHHY
| 4O INIJWITE HOVE »0d ZONO NOLLONMH DHOAN] |

i

s ™

SINIWATE 2L HLIAW AVEYY
{ NOLLONOH SINIANTION! ANYRINOD "ONISS300¥d
TETIVEHY ALVILING OL GNYIWNOD 3AIZ 03

~— 0ocl

~— 0GZ1

~ OFel

~ 0EZ1

~— oL

~ QLaL

US 9,135,065 B1

Sheet 13 of 13

Sep. 15, 2015

U.S. Patent

€L Old

LINSEY FONIS RACLS 7 LNdLN0

i

\.

LTINS FTONIS OLN] SLNS3 INIEWOD

y

)

7

SNOILHO AVEYY OML 18VET LV

~

| 0 NOULNDEXE T571veVd 40 SLINSEY JAIZ0HY

)

~

SNOLLHOd AVHEY OML 18V LY NO T3TIvdvd
NI 103X OL NOILONN 38NV0 OL AVHYY
G-N OL NOILONAH 40 NOLLVO!ddY TOHINGO

~

)

NOIENYEXT WA NOLITONIS [SLNdNI AVHYY
N FTdLLINW 1404405 OL NOLLONNE OGNS IXE

~

i

AVEHY O-N/ NOLLONTE NOLLVHEHO XAV
FAOD DNIANTIONI ONYIINOD "ONISS300
TETIVRIVA A1IVILING O L ONYWIWOD SAIRCH

~— 09l

~— 08¢1

~ 0%l

~ 0egL

~ OEL

~ 0LEl

US 9,135,065 B1

1
PARALLEL PROCESSING OF
MULTIDIMENSIONAL ARRAYS

RELATED APPLICATION

This application claims priority under 35 U.S.C. §119
based on U.S. Provisional Patent Application No. 61/529,
736, filed Aug. 31, 2011, and U.S. Provisional Patent Appli-
cation No. 61/656,262, filed Jun. 6, 2012, the disclosures of
which are incorporated by reference herein in their entireties.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more implementations and, together with the description,
explain these implementations. In the drawings:

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods described herein may be imple-
mented;

FIG. 3 is a diagram of example components of one or more
of the devices of the environment depicted in FIG. 2;

FIG. 4 is a diagram of example functional components of a
technical computing environment (TCE) that may be used by
one or more of the devices of the environment depicted in
FIG. 2;

FIG. 5 is a diagram of example operations capable of being
performed by the TCE;

FIG. 6 is a diagram of example array partitioning opera-
tions capable of being performed by the TCE;

FIG. 7 is a diagram of example array extension operations
capable of being performed by the TCE;

FIG. 8 is atable depicting a solution generated by the array
extension operations shown in FIG. 7;

FIG. 9 is a diagram of example core matrix operations
capable of being performed by the TCE;

FIG. 10 is a diagram of further example core matrix opera-
tions capable of being performed by the TCE;

FIG. 11 is a flow chart of an example process for partition-
ing and parallel processing of a multidimensional array;

FIG. 12 is a flow chart of an example process for parallel
processing elements of a multidimensional array; and

FIG. 13 is a flow chart of an example process for parallel
processing of a multidimensional array using core matrix
operations.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements.

A technical computing environment (TCE) may include a
computing environment that allows users to perform tasks
related to disciplines, such as, but not limited to, mathematics,
science, engineering, medicine, business, etc., more effi-
ciently than if the tasks were performed in another type of
computing environment, such as an environment that
required the user to develop code in a conventional program-
ming language, such as C++, C, Fortran, Pascal, etc. The TCE
may use an array, a vector, and/or a matrix as basic elements.
Users of a TCE may find it difficult to efficiently execute code
that involves computations with multiple small vectors and/or
matrices. When executed one at a time, operations with small
vectors and/or matrices may provide little opportunity for
multi-threaded or parallel execution. Furthermore, TCE users

10

15

20

25

30

35

40

45

50

55

60

65

2

often need to write code that involves performing the same
processing on different portions of an array. Typically, the
TCE users utilize for loops in order to achieve this. Unfortu-
nately, performing for loop indexing may be prone to errors
which may result in the for loop executing serially.

Overview

Systems and/or methods described herein may enable a
TCE to re-write code so that operations with small vectors
and/or matrices may be executed concurrently. This may
enable the TCE to perform multi-threaded or parallel execu-
tion of the operations. Alternatively, or additionally, the sys-
tems and/or methods may enable the TCE to express for loops
using an equivalent syntax that executes the resulting code
efficiently, in terms of memory usage and time, and on a
central processing unit (CPU) and a graphical processing unit
(GPU). This may permit TCE users to efficiently execute
problems involving a large number of small arrays, and to
implement algorithms for GPU arrays without requiring the
TCE users to write compute unified device architecture
(CUDA) code. This may also permit TCE users to implement
algorithms for distributed arrays without requiring the TCE
users to understand an underlying distribution scheme and a
structure of local parts.

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein. As shown in FIG. 1, a technical
computing environment (TCE) may receive a command to
initiate parallel processing. In one example, the command
(e.g., slicefun) may include a function (e.g., fun) to be per-
formed in connection with the parallel processing, a reference
to a multidimensional array, and an indication of one or more
dimensions by which the multidimensional array is to be
partitioned. Based on the slicefun command, the TCE may
partition the array along the one or more dimensions to create
multiple blocks of the array. The TCE may control application
of'the function fun to the multiple blocks so that two or more
of the blocks are executed in parallel by two or more
resources. Each resource may include a hardware resource or
a software resource of a device or a group of devices. For
example, a hardware resource may include a memory device,
a CPU, a GPU, a core of a CPU or GPU, etc. A software
resource may include a socket, a thread, a semaphore, an
inter-process communications (IPC) mechanism, etc.

The two or more resources may concurrently execute the
function fun on the two or more blocks to generate two or
more results. In one example, each of the two or more results
may include a portion of an output array. The resources may
provide the two or more results to the TCE, and the TCE may
receive the two or more results. The TCE may combine the
two or more results into a single result (e.g., an output array),
and may store and/or output the two or more results and/or the
single result.

Alternatively, or additionally, the command (e.g., array-
fun) may include a function (e.g., fun) to be performed in
connection with the parallel processing, and an array with
multiple elements. Based on the arrayfun command, the TCE
may invoke the function fun once for each element of the
array, and may control application of the function fun to the
multiple elements so that two or more of the elements are
executed in parallel by the two or more resources. The two or
more resources may concurrently execute the function fun on
the two or more elements to generate two or more results. In
one example, each of the two or more results may include an
element of an output array. The resources may provide the
two or more results to the TCE, and the TCE may receive the
two or more results. The TCE may combine the two or more

US 9,135,065 B1

3

results into a single result (e.g., an output array), and may
store and/or output the two or more results and/or the single
result.

Alternatively, or additionally, the command may include a
function (e.g., a core matrix operation) to be performed in
connection with the parallel processing, and an N-dimen-
sional (N-D) array (e.g., where N=2). Based on the command,
the TCE may extend the function to support multiple N-D
array inputs and singleton dimension (e.g., a dimension with
a size of one) expansion. The TCE may control application of
the function to the N-D array so that two or more portions of
the N-D array are executed in parallel by the two or more
resources. The two or more resources may concurrently
execute the function on the two or more portions of the N-D
array to generate two or more results. In one example, each of
the two or more results may include a portion of an output
array. The resources may provide the two or more results to
the TCE, and the TCE may receive the two or more results.
The TCE may combine the two or more results into a single
result (e.g., an output array), and may store and/or output the
two or more results and/or the single result.

Asusedherein, the term “parallel processing,” may include
any type of processing that can be distributed across two or
more resources and be performed at substantially the same
time. For example, in one implementation, parallel process-
ing may refer to task parallel processing where a number of
tasks are processed at substantially the same time on a number
of resources. In task parallel processing, each task may be
processed independently of other tasks executing at the same
time (e.g., a first resource executing a first task may not
communicate with a second resource executing a second
task). Alternatively, or additionally, parallel processing may
refer to data parallel processing, where data (e.g., a data set)
is parsed into a number of portions that are executed in par-
allel using two or more software units of execution. In data
parallel processing, the resources and/or the data portions
may communicate with each other as processing progresses.

Alternatively, or additionally, parallel processing may refer
to stream parallel processing (also referred to as pipeline
parallel processing). Stream parallel processing may use a
number of resources arranged in series (e.g., a line) where a
first resource produces a first result that is fed to a second
resource that produces a second result. Stream parallel pro-
cessing may also include a state where task allocation may be
expressed in a directed acyclic graph (DAG) or a cyclic graph
with delays. Other implementations may combine two or
more of task, data, or stream parallel processing techniques
alone or with other types of processing techniques to form
hybrid-parallel processing techniques.

Example Environment Arrangement

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods described herein may be
implemented. As illustrated, environment 200 may include a
client device 210 interconnected with a server device 220 via
a network 230. Components of environment 200 may inter-
connect via wired and/or wireless connections. A single client
device 210, server device 220, and network 230 have been
illustrated in FIG. 2 for simplicity. In practice, environment
200 may include more client devices 210, server devices 220,
and/or networks 230. In one example implementation, client
device 210 and server device 220 may be provided in a single
device or may be provided in separate devices.

Client device 210 may include one or more devices that are
capable of communicating with server device 220 via net-
work 230. For example, client device 210 may include a

10

20

25

30

35

40

45

50

55

60

65

4

laptop computer, a personal computer, a tablet computer, a
desktop computer, a workstation computer, a smart phone, a
personal digital assistant (PDA), and/or other computation
and communication devices.

Server device 220 may include one or more server devices,
or other types of computation and communication devices,
that gather, process, and/or provide information in a manner
described herein. Server device 220 may include a device that
is capable of communicating with client device 210 (e.g., via
network 230). In one example, server device 220 may include
one or more laptop computers, personal computers, worksta-
tion computers, servers, central processing units (CPUs),
graphical processing units (GPUs), application-specific inte-
grated circuits (ASICs), field-programmable gate arrays (FP-
GAs), etc. and/or software (e.g., a simulator) executing on the
aforementioned devices. In one example, server device 220
may include TCE 240 and may perform some or all of the
functionality described herein for client device 210. Alterna-
tively, server device 220 may be omitted and client device 210
may perform all of the functionality described herein for
client device 210.

Network 230 may include a network, such as a local area
network (LAN), a wide area network (WAN), a metropolitan
area network (MAN), a telephone network, such as the Public
Switched Telephone Network (PSTN), an intranet, the Inter-
net, or a combination of networks.

TCE 240 may be provided within a computer-readable
medium of client device 210. Alternatively, or additionally,
TCE 240 may be provided in another device (e.g., server
device 220) that is accessible by client device 210. TCE 240
may include hardware or a combination of hardware and
software that provides a computing environment that allows
users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine,
business, etc., more efficiently than if the tasks were per-
formed in another type of computing environment, such as an
environment that required the user to develop code in a con-
ventional programming language, such as C++, C, Fortran,
Pascal, etc. In one implementation, TCE 240 may include a
dynamically-typed programming language (e.g., the M lan-
guage, a MATLAB® language, a MATLAB-compatible lan-
guage, a MATLAB-like language, etc.) that can be used to
express problems and/or solutions in mathematical notations.

For example, TCE 240 may use an array as a basic element,
where the array may not require dimensioning. These arrays
may be used to support array-based programming where an
operation may apply to an entire set of values included in the
arrays. Array-based programming may allow array-based
operations to be treated as high-level programming that may
allow, for example, operations to be performed on entire
aggregations of data without having to resort to explicit loops
of'individual non-array operations. In addition, TCE 240 may
be adapted to perform matrix and/or vector formulations that
can be used for data analysis, data visualization, application
development, simulation, modeling, algorithm development,
etc. These matrix and/or vector formulations may be used in
many areas, such as statistics, image processing, signal pro-
cessing, control design, life sciences modeling, discrete event
analysis and/or design, state based analysis and/or design, etc.

TCE 240 may further provide mathematical functions and/
or graphical tools (e.g., for creating plots, surfaces, images,
volumetric representations, etc.). In one implementation,
TCE 240 may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel processing, etc.). Alterna-
tively, or additionally, TCE 240 may provide these functions
as block sets or in another way, such as via a library, etc.

US 9,135,065 B1

5

TCE 240 may be implemented as a text-based environment
(e.g., MATLAB software; Octave; Python; Comsol Script;
MATRIXx from National Instruments; Mathematica from
Wolfram Research, Inc.; Mathcad from Mathsoft Engineer-
ing & Education Inc.; Maple from Maplesoft; Extend from
Imagine That Inc.; Scilab from The French Institution for
Research in Computer Science and Control (INRIA); Vir-
tuoso from Cadence; Modelica or Dymola from Dynasim;
etc.); a graphically-based environment (e.g., Simulink® soft-
ware, Stateflow® software, SimEvents® software, Sim-
scape™ software, etc., by The MathWorks, Inc.; VisSim by
Visual Solutions; LabView® by National Instruments;
Dymola by Dynasim; SoftWIRE by Measurement Comput-
ing; WiT by DALSA Coreco; VEE Pro or SystemVue by
Agilent; Vision Program Manager from PPT Vision; Khoros
from Khoral Research; Gedae by Gedae, Inc.; Scicos from
(INRIA); Virtuoso from Cadence; Rational Rose from IBM;
Rhopsody or Tau from Telelogic; Ptolemy from the Univer-
sity of California at Berkeley; aspects of a Unified Modeling
Language (UML) or SysML environment; etc.); or another
type of environment, such as a hybrid environment that
includes one or more of the above-referenced text-based envi-
ronments and one or more of the above-referenced graphi-
cally-based environments.

TCE 240 may include a programming language (e.g., the
MATLAB language) that may be used to express problems
and/or solutions in mathematical notations. The program-
ming language may be dynamically typed and/or array-
based. In a dynamically typed array-based computing lan-
guage, data may be contained in arrays and data types of the
data may be determined (e.g., assigned) at program execution
time.

For example, suppose a program, written in a dynamically
typed array-based computing language, includes the follow-
ing statements:

A=‘hello’

A=int=([1, 2])

A=[1.1,2.2,33]

Now suppose the program is executed, for example, in a
TCE, such as TCE 240. During run-time, when the statement
“A=‘hello””’ is executed the data type of variable “A” may be
a string data type. Later when the statement “A=int=([1, 2])”
is executed the data type of variable “A” may be a 1-by-2 array
containing elements whose data type are 32 bit integers.
Later, when the statement “A=[1.1, 2.2, 3.3]” is executed,
since the language is dynamically typed, the data type of
variable “A” may be changed from the above 1-by-2 array to
a 1-by-3 array containing elements whose data types are
floating point. As can be seen by this example, data in a
program written in a dynamically typed array-based comput-
ing language may be contained in an array. Moreover, the data
type of the data may be determined during execution of the
program. Thus, in a dynamically type array-based computing
language, data may be represented by arrays and data types of
data may be determined at run-time.

TCE 240 may provide mathematical routines and a high-
level programming language suitable for non-professional
programmers and may provide graphical tools that may be
used for creating plots, surfaces, images, volumetric repre-
sentations, or other representations. TCE 240 may provide
these routines and/or tools using toolboxes (e.g., toolboxes
for signal processing, image processing, data plotting, paral-
lel processing, etc.). TCE 240 may also provide these routines
in other ways, such as, for example, via a library, local or
remote database (e.g., a database operating in a computing
cloud), remote procedure calls (RPCs), and/or an application
programming interface (API). TCE 240 may be configured to

10

15

20

25

30

35

40

45

50

55

60

65

6

improve runtime performance when performing computing
operations. For example, TCE 240 may include a just-in-time
(JIT) compiler.

Although FIG. 2 shows example components of environ-
ment 200, in other implementations, environment 200 may
include fewer components, different components, difterently
arranged components, and/or additional components than
those depicted in FIG. 2. Alternatively, or additionally, one or
more components of environment 200 may perform one or
more other tasks described as being performed by one or more
other components of environment 200.

Example Device Architecture

FIG. 3 is an example diagram of a device 300 that may
correspond to one or more of the devices of environment 200.
As illustrated, device 300 may include a bus 310, a processing
unit 320, a main memory 330, a read-only memory (ROM)
340, a storage device 350, an input device 360, an output
device 370, and/or a communication interface 380. Bus 310
may include a path that permits communication among the
components of device 300.

Processing unit 320 may include one or more processors,
microprocessors, or other types of processing units that may
interpret and execute instructions. Main memory 330 may
include one or more random access memories (RAMs) or
other types of dynamic storage devices that may store infor-
mation and/or instructions for execution by processing unit
320. ROM 340 may include one or more ROM devices or
other types of static storage devices that may store static
information and/or instructions for use by processing unit
320. Storage device 350 may include a magnetic and/or opti-
cal recording medium and its corresponding drive.

Input device 360 may include a mechanism that permits a
user to input information to device 300, such as a keyboard, a
camera, an accelerometer, a gyroscope, a mouse, a pen, a
microphone, voice recognition and/or biometric mecha-
nisms, a remote control, a touch screen, a neural interface, etc.
Output device 370 may include a mechanism that outputs
information to the user, including a display, a printer, a
speaker, etc. Communication interface 380 may include any
transceiver-like mechanism that enables device 300 to com-
municate with other devices, networks, and/or systems. For
example, communication interface 380 may include mecha-
nisms for communicating with another device or system via a
network.

As described herein, device 300 may perform certain
operations in response to processing unit 320 executing soft-
ware instructions contained in a computer-readable medium,
such as main memory 330. A computer-readable medium
may be defined as a non-transitory memory device. A
memory device may include space within a single physical
memory device or spread across multiple physical memory
devices. The software instructions may be read into main
memory 330 from another computer-readable medium, such
as storage device 350, or from another device via communi-
cation interface 380. The software instructions contained in
main memory 330 may cause processing unit 320 to perform
processes described herein. Alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to implement processes described herein. Thus,
implementations described herein are not limited to any spe-
cific combination of hardware circuitry and software.

Although FIG. 3 shows example components of device
300, in other implementations, device 300 may include fewer
components, different components, differently arranged
components, and/or additional components than depicted in

US 9,135,065 B1

7

FIG. 3. Alternatively, or additionally, one or more compo-
nents of device 300 may perform one or more other tasks
described as being performed by one or more other compo-
nents of device 300.

Example Technical Computing Environment

FIG. 4 is a diagram of example functional components of
TCE 240. In one implementation, the functions described in
connection with FIG. 4 may be performed by one or more
components of device 300 (FIG. 3) and/or by one or more
devices 300. As shown in FIG. 4, TCE 240 may include a
block diagram editor 410, graphical entities 420, blocks 430,
and/or an execution engine 440.

Block diagram editor 410 may include hardware or a com-
bination of hardware and software that may be used to graphi-
cally specity models of dynamic systems. In one implemen-
tation, block diagram editor 410 may permit a userto perform
actions, such as construct, edit, display, annotate, save, and/or
print a graphical model (e.g., a block diagram that visually
and/or pictorially represents a dynamic system). In another
implementation, block diagram editor 410 may permit a user
to create and/or store data relating to graphical entities 420.

A textual interface may be provided to permit interaction
with block diagram editor 410. A user may write scripts that
perform automatic editing operations on a model using the
textual interface. For example, the textual interface may pro-
vide a set of windows that may act as a canvas for the model,
and may permit user interaction with the model. A model may
include one or more windows depending on whether the
model is partitioned into multiple hierarchical levels.

Graphical entities 420 may include hardware or a combi-
nation of hardware and software that may provide entities
(e.g., signal lines, buses, etc.) that represent how data may be
communicated between functional and/or non-functional
units and blocks 430 of a model. Blocks 430 may include
fundamental mathematical elements of a block diagram
model.

Execution engine 440 may include hardware or a combi-
nation of hardware and software that may process a graphical
model to produce simulation results, may convert the graphi-
cal model into executable code, and/or may perform other
analyses and/or related tasks. In one implementation, for a
block diagram graphical model, execution engine 440 may
translate the block diagram into executable entities (e.g., units
of execution) following the layout of the block diagram. The
executable entities may be compiled and/or executed on a
device (e.g., client device 210) to implement the functionality
specified by the model.

Graphical models may include entities with relationships
between the entities, and the relationships and/or the entities
may have attributes associated with them. The entities my
include model elements such as blocks 430 and ports. The
relationships may include model elements such as lines (e.g.,
connector lines) and references. The attributes may include
model elements such as value information and meta informa-
tion for the model element associated with the attributes.
Graphical models may be associated with configuration
information. The configuration information may include
information for the graphical model such as model execution
information (e.g., numerical integration schemes, fundamen-
tal execution period, etc.), model diagnostic information
(e.g., whether an algebraic loop should be considered an error
or result in a warning), model optimization information (e.g.,
whether model elements should share memory during execu-

10

15

20

25

30

40

45

50

55

60

65

8

tion), model processing information (e.g., whether common
functionality should be shared in code that is generated for a
model), etc.

Additionally, or alternatively, a graphical model may have
executable semantics and/or may be executable. An execut-
able graphical model may be a time based block diagram. A
time based block diagram may consist, for example, of blocks
(e.g., blocks 430) connected by lines (e.g., connector lines).
The blocks may consist of elemental dynamic systems such
as a differential equation system (e.g., to specify continuous-
time behavior), a difference equation system (e.g., to specify
discrete-time behavior), an algebraic equation system (e.g., to
specify constraints), a state transition system (e.g., to specity
finite state machine behavior), an event based system (e.g., to
specify discrete event behavior), etc. The lines may represent
signals (e.g., to specify input/output relations between blocks
or to specify execution dependencies between blocks), vari-
ables (e.g., to specify information shared between blocks),
physical connections (e.g., to specify electrical wires, pipes
with volume flow, rigid mechanical connections, etc.), etc.
The attributes may consist of meta information such as
sample times, dimensions, complexity (whether there is an
imaginary component to a value), data type, etc. associated
with the model elements.

In a time based block diagram, ports may be associated
with blocks (e.g., blocks 430). A relationship between two
ports may be created by connecting a line (e.g., a connector
line) between the two ports. Lines may also, or alternatively,
be connected to other lines, for example by creating branch
points. For instance, three or more ports can be connected by
connecting a line to each ofthe ports, and by connecting each
of the lines to a common branch point for all of the lines. A
common branch point for the lines that represent physical
connections may be a dynamic system (e.g., by summing all
variables of a certain type to O or by equating all variables of
a certain type). A port may be an input port, an output port, an
enable port, a trigger port, a function-call port, a publish port,
a subscribe port, an exception port, an error port, a physics
port, an entity flow port, a data flow port, a control flow port,
etc.

Relationships between blocks (e.g., blocks 430) may be
causal and/or non-causal. For example, a model may include
a block that represents a continuous-time integration block
that may be causally related to a data logging block by using
a line (e.g., a connector line) to connect an output port of the
continuous-time integration block to an input port of the data
logging block. Further, during execution of the model, the
value stored by the continuous-time integrator may change as
the current time of the execution progresses. The value of the
state of the continuous-time integrator may be available on
the output port and the connection with the input port of the
data logging block may make this value available to the data
logging block.

A sample time may be associated with the elements of a
graphical model. For example, a graphical model may include
ablock (e.g., block 430) with a continuous sample time such
as a continuous-time integration block that may integrate an
input value as time of execution progresses. This integration
may be specified by a differential equation. During execution
the continuous-time behavior may be approximated by a
numerical integration scheme that is part of a numerical
solver. The numerical solver may take discrete steps to
advance the execution time, and these discrete steps may be
constant during an execution (e.g., fixed step integration) or
may be variable during an execution (e.g., variable-step inte-
gration).

US 9,135,065 B1

9

Alternatively, or additionally, a graphical model may
include a block (e.g., block 430) with a discrete sample time
such as a unit delay block that may output values of a corre-
sponding input after a specific delay. This delay may be a time
interval and this interval may determine a sample time of the
block. During execution, the unit delay block may be evalu-
ated each time the execution time has reached a point in time
where an output of the unit delay block may change. These
points in time may be statically determined based on a sched-
uling analysis of the graphical model before starting execu-
tion.

Alternatively, or additionally, a graphical model may
include a block (e.g., block 430) with an asynchronous
sample time, such as a function-call generator block that may
schedule a connected block to be evaluated at a non-periodic
time. During execution, a function-call generator block may
evaluate an input and when the input attains a specific value
when the execution time has reached a point in time, the
function-call generator block may schedule a connected
block to be evaluated at this point in time and before advanc-
ing execution time.

Further, the values of attributes of a graphical model may
be inferred from other elements of the graphical model or
attributes of the graphical model. For example, the graphical
model may include a block (e.g., block 430), such as a unit
delay block, that may have an attribute that specifies a sample
time of the block. When a graphical model has an execution
attribute that specifies a fundamental execution period, the
sample time of the unit delay block may be inferred from this
fundamental execution period.

As another example, the graphical model may include two
unit delay blocks (e.g., blocks 430) where the output of the
first of the two unit delay blocks is connected to the input of
the second of the two unit delay block. The sample time of the
first unit delay block may be inferred from the sample time of
the second unit delay block. This inference may be performed
by propagation of model element attributes such that after
evaluating the sample time attribute of the second unit delay
block, a graph search proceeds by evaluating the sample time
attribute of the first unit delay block since it is directly con-
nected to the second unit delay block.

The values of attributes of a graphical model may be set to
characteristics settings, such as one or more inherited set-
tings, one or more default settings, etc. For example, the data
type of a variable that is associated with a block (e.g., block
430) may be set to a default such as a double. Because of the
default setting, an alternate data type (e.g., a single, an integer,
a fixed point, etc.) may be inferred based on attributes of
elements that the graphical model comprises (e.g., the data
type of a variable associated with a connected block) and/or
attributes of the graphical model. As another example, the
sample time of a block may be set to be inherited. In case of
an inherited sample time, a specific sample time may be
inferred based on attributes of elements that the graphical
model comprises and/or attributes of the graphical model
(e.g., a fundamental execution period).

In one example implementation, TCE 240 may include a
code generator that can generate code from a model. The code
generator may receive code in a first format and may trans-
form the code from the first format into a second format. The
code generator may generate source code, assembly language
code, binary code, interface information, configuration infor-
mation, performance information, etc., from at least a portion
of a graphical model.

For example, the code generator may generate C, C++,
SystemC, Java, etc., from the graphical model. Alternatively,
or additionally, the code generator may further generate Uni-

10

15

20

25

30

35

40

45

50

55

60

65

10

fied Modeling Language (UML) based representations and/or
extensions from some or all of a graphical model (e.g., Sys-
tem Modeling Language (SysML), Extensible Markup Lan-
guage (XML), Modeling and Analysis of Real Time and
Embedded Systems (MARTE), Hardware Description Lan-
guage (HDL), Automotive Open System Architecture (AU-
TOSAR), etc.).

Although FIG. 4 shows example functional components of
TCE 240, in other implementations, TCE 240 may include
fewer functional components, different functional compo-
nents, differently arranged functional components, and/or
additional functional components than depicted in FIG. 4.
Alternatively, or additionally, one or more functional compo-
nents of TCE 240 may perform one or more other tasks
described as being performed by one or more other functional
components of TCE 240.

Example Technical Computing Environment
Operations

FIG. 5 is a diagram of example operations capable of being
performed by TCE 240. TCE 240 may include the features
described above in connection with, for example, one or more
of FIGS. 1-4. As illustrated in FIG. 5, TCE 240 may generate
multiple processes 510-1 through 510-Y (collectively
referred to herein as “processes 510,” and, in some instances,
singularly as “process 510”) to be executed or handled. Each
of processes 510 may include one or more portions to be
executed or handled. For example, process 510-1 may include
portions 520-1, 520-2, and 520-3 (collectively referred to
herein as “portions 520). Process 510-2 may include por-
tions 530-1 and 530-2 (collectively referred to herein as “por-
tions 530”). Process 510-Y may include portions 540-1, 540-
2, and 540-3 (collectively referred to herein as “portions
5407). Portions 520-540 may be executed or handled by one
or more of multiple resources 550-1 through 550-M (collec-
tively referred to herein as “resources 550,” and, in some
instances, singularly as “resource 5507).

Process 510 may include program code to be executed or
handled by resources 550. In one example, process 510 may
include processes generated by TCE 240. Each of portions
520 may include any division or sub-process of process 510-
1, such as contiguous portions of process 510-1 and/or non-
contiguous portions of process 510-1. Each of portions 530
may include any division or sub-process of process 510-2,
such as contiguous portions of process 510-2 and/or non-
contiguous portions of process 510-2. Each of portions 540
may include any division or sub-process of process 510-Y,
such as contiguous portions of process 510-Y and/or non-
contiguous portions of process 510-Y. In one example, each
of portions 520-540 may include a thread or threads of pro-
gram code.

Resource 550 may include a hardware resource or a soft-
ware resource of a device or a group of devices (e.g., client
device 210 and/or server device 220). For example, a hard-
ware resource may include a memory device, a CPU, a GPU,
a core of a CPU or GPU, etc. of a device. A software resource
may include a socket, a thread, a semaphore, an IPC mecha-
nism, etc.

Although FIG. 5 shows example operations capable of
being performed by TCE 240, in other implementations, TCE
240 may perform fewer operations, different operations, and/
or additional operations than depicted in FIG. 5. Alterna-
tively, or additionally, one or more components of FIG. 5 may
perform one or more other tasks described as being per-
formed by one or more other components of FIG. 5.

US 9,135,065 B1

11

FIG. 6 is a diagram of example array partitioning opera-
tions 600 capable of being performed by TCE 240 and
resources 550. TCE 240 and resources 550 may include the
features described above in connection with, for example, one
or more of FIGS. 1-5. As shown in FIG. 6, TCE 240 may
receive acommand 610 to initiate parallel processing, such as
a slicefun command. The slicefun command may be utilized
when a user wants to process all pages of an array A as
follows:

for p=1:size(A, 3)

B(, &, p)~fun(AC, 3, p));

end.

Although very explicit, this code may not lend itself well to
parallel execution since the loop over p is executed serially,
one page of the array A is extracted at a time, a function funis
executed on the page, and a result is placed into a page of an
array B. Furthermore, one page of the array A may be asso-
ciated with a single resource 550 so the for loop may only
benefit from the single resource 550. For example, the array A
may be distributed between multiple resources 550, but the
pages of the array A may be stored entirely within one par-
ticular resource 550. In such a situation, for a given value of
p, only the particular resource 550 would perform the calcu-
lations of fun(A(:, :, p)).

The slicefun command may replace the code described
above, and may process slices or blocks of the array A. Each
of'the blocks may represent a subset of the array A, and may
include data of the array A that is physically moved in
memory or to another device. Alternatively, each of the blocks
may include a set of pointers to the data of the array A, where
the data remains in the same memory location. In one
example, the syntax B=slicefun(fun, A) may invoke the func-
tion fun on each block of the array A, and may place the result
inanarray B. The array A may be sliced or divided along a last
non-singleton dimension of the array A. If a user wants to
divide the array A along a particular dimension, other than the
last non-singleton dimension, the user may specify a Dim
argument (e.g., B=slicefun(fun, A, ‘Dim’, d)). The Dim argu-
ment may cause the array A to be divided along a dimension
d. For example, if the array A is a three-dimensional array, the
syntax B=slicefun(fun, A, ‘Dim’, 2) may be equivalent to:

for j=1:size(A, 2)

B(:yj,)=fun(A(j,)

end.

In one example, the syntax slicefun(fun, A, ‘Dim’, d) may
effectively include block processing the array A using blocks
that are of size one for dimension d and of size size(A, k) for
dimensions k that are not equal to dimension d.

The slicefun command may accept an argument (e.g.,
BlockSize) that specifies a block size: B=slicefun(fun, A,
‘Dim’, d, ‘BlockSize’, b). The parameter b may be a scalar
that denotes the block size that is used, and may have a default
value of one. The array A may be processed b blocks ata time.
For example, if the array A is a three-dimensional array, the
syntax B=slicefun(fun, A, ‘Dim’, 2, ‘BlockSize’, 2) may be
equivalent to:

for j=1:2size(A, 2)

B(j:;j+1, H=fun(A(,j:j+1, 2);

end.

The slicefun command may accept multiple inputs and
outputs. The syntax [B1l, B2, . . .]=slicefun(fun, Al,
A2, ...)may invoke the function fun on each block of arrays
Al,A2,...,and may place the outputs of the function fun into
arrays B1, B2, For example, if arrays Al and A2 are

10

25

40

45

50

60

12

three-dimensional and have the same size, the syntax [B1, B2,
B3]=slicefun(fun, A1, A2, ‘Dim’, 1) may be equivalent to:

for i=1:size(Al, 1)

[B1(,:,), B2(i,:,:), B3 (i,:,1)=fun(A1(,:,0), A2 (1,:,));
end.

Singleton dimension expansion may enable the slicefun
command to allow for inputs that do not have the same size.
For example, for the syntax [B1, B2, . . . |=slicefun(fun, A1,
A2, ...),eachdimension of arrays A1, A2, ... must either be
equal to each other, or equal to one. Whenever a dimension of
one of the input arrays is a singleton in the slicing dimension,
the entire array may be passed into the function fun, rather
than just a block of the array. If arrays A1, A2, . . . are not all
of'the same size, an aggregate size of the input arrays may be
defined as follows: (1) a number of dimensions may be a
maximum number of dimensions of arrays A1, A2, . .. ; and
(2) a size in dimension k may be a maximum of the sizes of
arrays A1, A2, . ..indimension k. For example, if array Al is
three-dimensional and array A2 is scalar, the aggregate size of
the input arrays may be the same as the size of array Al, and
the syntax B=slicefun(fun, A1, A2, ‘Dim’, 1) may be equiva-
lent to:

for i=1:size(Al, 1)

B(,:,:)=fun(A1(,:,:), A2);

end.

Inanother example, ifarray Al isa 10-by-1 array, and array
A2 is a 1-by-10 array, then the aggregate size of the input
arrays may be 10-by-10, and the syntax B=slicefun(fun, A1,
A2, ‘Dim’, 2) may be equivalent to:

for i=1:size(A2, 2) % Here, size(A2, 2) is same as length

(A2)
B(:,i)=fun(Al, A2(:, 1)); % Here, A2(:,i) is same as A2(i)
end.

The slicefun command may permit overlap between
blocks. The syntax B=slicefun(fun, A, ‘Overlap’, 0) may
invoke the function fun on each block of array A, but may pass
0+1 blocks to the function fun each time. For example, if array
A is three-dimensional, the syntax B=slicefun(fun, A, ‘Dim’,
2, ‘Overlap’, 2) may be equivalent to:

for j=1:size(A, 2)

B(:.j,))=tun(A(:,j:j+2, 2));

end.

A default value of the overlap may be set zero (i.e., no over-
lap).

The slicefun command may permit padding of inputs (e.g.,
adding columns and/or rows to an array). For example, if
array Al is a 5-by-10 array and a user wants to process array
Al along the columns of array Al, three columns at a time,
and array A2 is a 5-by-1 array, the slicefun command may
invoke the function fun on:

Al(:, 1:3) and A2;

Al(:, 4:6) and A2;

Al(:, 7:9) and A2; and

Al(:, 10) padded to have three columns and A2.

Thus, array A1 may be padded so that its number of columns
is a multiple of three, and array A2 may not be padded.

As a default, sizes of the outputs of the slicefun command
may match an aggregate size of the inputs. The slicefun
command may also enable the function fun to return a scalar
as the output of processing a block of its inputs. In the syntax
[B1, B2, ... |=slicefun(fun, Al, A2, . . ., ‘Output’, output-
descr), outputdescr may be acell array {od1, ..., odm} of the
same length as a number of outputs B1, B2, . . ., Bm. Each
element of the cell array may be either a string (e.g., ‘slice’ or
‘scalar’) or a size vector. If the output descriptor odk for an
array Bk is set to ‘slice’, then the array Bk may be the same
size as an aggregate size of input arrays in all dimensions

US 9,135,065 B1

13

except d, and the size of array Bk may be equal to a number of
blocks. If the output descriptor odk for the array Bk is set to
‘scalar’, then the array Bk may be a row vector with a length
equal to the number of blocks. If the output descriptor odk for
the array Bk is a size vector, then length(odk) may be greater
than or equal to the slicing dimension, and the size ofthe array
Bk may be equal to odk. For example, if A is a matrix, the
syntax [B1, B2]=slicefun(fun, A, ‘Output’ {‘slice’, ‘scalar’},
‘Dim’, 1) may be equivalent to:
for i=1:size(A, 1)
[B1(i,:), B2(1)]=fun(A(i,:));

end.

In another example, A may be a 10-by-10 array and the
syntax B=slicefun(fun, A, ‘Dim’, 2, ‘Output’, {[20, 30]})
may be executed. In this example, an array B may be a
20-by-30 array, and since array A may be processed in 10
blocks, each call to the function fun may yield a 10-by-3 array
that the slicefun command may combine to form array B.

As further shown in FIG. 6, command 610 may include a
dimension (‘Dim’) parameter with a value of one, and a block
size (‘Blocksize’) parameter with a value of three. Thus,
command 610 may specify that array A 620 is to be divided
along a first dimension with a block size of three. Further-
more, command 610 may specify an output (‘Output’) param-
eter with a value of {[20, 30]}, which may indicate that the
output (e.g., array B) is to be a 20-by-30 array. It may be
assumed, for this example, that array A 620 is a 10-by-10
two-dimensional array.

TCE 240 may determine that each resource 550 is to pro-
cess one block of array A 620. Therefore, TCE 240 may
determine that array A 620 is to be divided into four blocks
630, where each block 630 may include three rows of array A
620. However, since array A includes ten rows, TCE 240 may
pad array A with two rows to generate array A 620 with two
extra rows. The extra rows may be empty (i.e., may not
contain data). Each block 630 may be provided to a separate
resource 550 in parallel. A first block 630 may be provided to
resource 550-1 to process rows 1 to 3 of array A 620, a second
block 630 may be provided to resource 550-2 to process rows
4 to 6 of array A 620, a third block 630 may be provided to
resource 550-3 to process rows 7 to 9 of array A 620, and a
fourth block 630 may be provided to resource 550-4 to pro-
cess row 10 of array A 620. Resources 550 may execute the
first through fourth blocks 630 in parallel, as indicated by
reference number 640, to produce results 650.

In order for the output parameter (e.g., {[20, 30]}) to be
satisfied, the function fun may need to yield a 20-by-8 array
based on execution of the first block 630, a 20-by-8 array
based on execution of the second block 630, a 20-by-8 array
based on execution of the third block 630, and a 20-by-6 array
based on execution of the fourth block 630. In one example,
TCE 240 may perform a check to determine whether these
conditions are satisfied prior to dividing array A 620 into
blocks 630. The resulting arrays of results 650 may be pro-
vided to TCE 240, and TCE 240 may combine results 650 into
a single result, such as a 20-by-30 array B 660. In one
example, TCE 240 may concatenate arrays of results 650 to
generate array B 660. TCE 240 may store and/or output array
B 660.

Although FIG. 6 shows example operations capable of
being performed by TCE 240, in other implementations, TCE
240 may perform fewer operations, different operations, and/
or additional operations than depicted in FIG. 6. Alterna-
tively, or additionally, one or more components of FIG. 6 may
perform one or more other tasks described as being per-
formed by one or more other components of FIG. 6.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 7 is a diagram of example array extension operations
700 capable of being performed by TCE 240 and resources
550. TCE 240 and resources 550 may include the features
described above in connection with, for example, one or more
of FIGS. 1-6. As shown in FIG. 7, TCE 240 may receive a
command 710 to initiate parallel processing, such as an array-
fun command. In one example, for the syntax B=arrayfun
(fun, A), the arrayfun command may invoke a function fun
once for each element of an array A, and may return the results
to an array B. For the syntax A=arrayfun(fun, S, T, . . .), the
arrayfun command may evaluate the function fun using ele-
ments of arrays S, T, . . . as input arguments, where the input
arguments may be the same size. The arrayfun command may
also accept name-value pairs for the input arguments.

The arrayfun command may support multiple inputs and
outputs. For example, the syntax [B1, B2, . .. |=arrayfun(fun,
Al,A2,...),ifinputarrays A1, A2, . ..arethe same size, may
invoke the function fun once for each element of the input
arrays, and may place the results into output arrays Bl,
B2, The arrayfun command may support inputs that do
not have the same size. For the syntax [B1, B2, . . . |=arrayfun
(fun, A1, A2, . ..), each dimension of the input arrays Al,
A2, ... may either be equal to each other, or equal to one.
Whenever a dimension of an input array or an output array is
a singleton (equal to one), the array may be virtually repli-
cated along the dimension to match the other array. For
example, if A is an array, then the syntax B=arrayfun(fun, A)
may be equivalent to:

for i=1:numel(A)
B(i)=fun(A(1));
end
B=reshape(B, size(A)).
In another example, if Al is a matrix and A2 is a row vector,
the syntax B=arrayfun(fun, A1, A2) may be equivalent to:

for j=1:size(A, 2)
for i=1:size(A, 1)
B(i,j)=fun(A1(j), A2());
end
end.

As further shown in FIG. 7, command 710, in this example,
may include the syntax B=arrayfun(fun, A), where fun is a
function to be executed on an input array A and B is an output
array. TCE 240 may receive an array A 720 along with com-
mand 710. In this example, array A 720 may be a 3-by-3 array
with nine elements (e.g., a,, . . ., a53). Based on command
710, TCE 240 may invoke the function fun once for each
element of array A 720, with singleton dimension expansion.
For example, TCE 240 may invoke the function fun for ele-
ment a,, elementa, ,, .. ., element a,;, and may provide the
invocations of the function fun to resources 550. TCE 240
may provide the invocation of the function fun for elementa, ;
to resource 550-1, may provide the invocation of the function
fun for element a,, to resource 550-2, etc.

Resources 550 may execute, in parallel, the invocations of
the function fun for the elements of array A 720, as indicated
by reference number 730. The execution of the function fun
by resources 550 may generate nine results 740 (e.g., one
result 740 for each element of array A 720). In one example,
each result 740 may include an element of an output array.
Resources 550 may provide results 740 to TCE 240, and TCE
240 may receive results 740. TCE 240 may combine results
740 into a single result (e.g., an array B 750), and may store
and/or output array B 750.

US 9,135,065 B1

15

The arrayfun command may execute more quickly on both
CPUs and on GPUs than corresponding for-loop code. For
example, a for-loop may perform indexing to evaluate a func-
tion on all elements in an array as follows:

for i=1:numel(A)

B(i)=fun(A(i));

end

B=reshape(B, size(A)).

Since there may be no restrictions on the content of the
function fun, the for-loop may need to support the possibility
that the function fun could modity array A. This, in turn, may
require the indexing operations, inside the for-loop, to be
bounds-checked.

In contrast, the arrayfun command (e.g., B=arrayfun(fun,
A))may loop over the elements of array A and may invoke the
function fun on each element. However, since the function
fun may be transparent, the arrayfun command may ensure
that the array A remains constant during the looping. Further-
more, since the arrayfun command performs the looping over
the elements of the array A, all of the indexing into the array
A may be within bounds and may not need to be bounds-
checked. Consequently, the arrayfun command may execute
faster than the corresponding user-written for-loop.

The arrayfun command may map directly to a GPU in a
straightforward manner. For example, the arrayfun command
may create one thread for each element of an array A, and a
thread 1 may execute B(i)=fun(A(i)). There are alternative
mappings that may be used between the elements of the array
A and the threads of execution. For example, if the size of the
array A is m and n in first and second dimensions, respec-
tively, and p is a product of the sizes of the array A in other
dimensions, the arrayfun command can use a total of mxn
threads and enumerate the threads by two-dimensional indi-
ces (i,j), where i and j are integers, 1=<i=m, and 1=<j=n. Thread
(1,)) may process p elements of the array A, namely the ele-
ments A(i, j, 1), . .., AG,], p)-

The singleton dimension expansion of the arrayfun com-
mand may be utilized to improve execution performance on
GPUs. For example, assume that a, b, and ¢ are vectors, that
they are aligned along first, second, and third dimensions,
respectively, and that the following equation is to be calcu-
lated: D=arrayfun(fun, a, b, ¢). If we let m, n, and p denote a
number of elements in a, b, and c, respectively, then array D
may be an m-by-n-by-p array.

In one example, if the arrayfun command launches mxnxp
threads and has threads (i, j, k) calculate D(j, j, k)=fun(a(i),
b(j), c(k)) independently of all other threads, then each thread
may read three elements from memory and write one element
to memory. This may lead to a total of 3xmxnxp elements
read and mxnxp elements written, for a total of 4xmxnxp
read-write (RW) operations. Thus, there may be 4 RW opera-
tions for each output element calculated. This example may
notadequately take any advantage of the singleton dimension
expansion.

Alternatively, in a more refined approach, the arrayfun
command may read a, b, and ¢ once each, leading to a total of
m+n+p elements read, and may write all mxnxp elements of
the array D. Since GPUs may have a limited amount of data
cache, the number of reads performed may be modified by the
arrayfun command. For example, the arrayfun command may
only need to perform (mxnxp+m+n+p) RW operations for
mxnxp output elements. If m=n=p=32, a ratio of 1.0029 RW
operations may be provided for each output element. As m, n,
and p increase, this ratio may approach one from above.

To simplify the more refined approach, it may be assumed
that m, n, and p are integer multiples of thirty-two (32). The
arrayfun command may launch a total of mxnxp/128 threads,

25

30

35

40

45

50

55

60

65

16

and may have each thread calculate D(i, j, k)=fun(a(i), b(j),
c(k)) for 128 different choices of i, j, and k. The arrayfun
command may group the threads into blocks of 256 threads,
and may have the threads in each block cooperate to perform
these calculations for 32 elements of i, 32 elements of j, and
32 elements of k. Thus, the 256 threads may compute 32x32x
32=32,768 elements (e.g., where each thread computes
32,768/256=128 elements). The threads computing the
32,768 elements of the array D may write those elements to
memory. However, the threads computing the 32,768 ele-
ments may only need to read 32 elements of a, 32 elements of
b, and 32 elements of ¢ (e.g., a total of 96 elements). The
arrayfun command may read the elements of a, b, and ¢ once
into a shared memory on the GPU, where they can be
accessed by all threads in a thread block.

The combined effect of the more refined approach is that it
may only perform 32,768+96 RW operations in order to
compute 32,768 elements. This may provide a ratio of 1.0029
RW operations for each output element, independent of the
values of m, n, and p. As an example of the more refined
approach, it may be assumed that a, b, and c are all of length
64. The arrayfun command may launch 8 thread blocks with
256 threads in each block. Each thread may process 128
elements. The different thread blocks may take responsibility
for the different 32-by-32-by-32 cubes of the problem.

FIG. 8 is a table 800 depicting a solution generated by the
arrayfun command in accordance with this example. As
shown, table 800 may include a thread block field 810, an
elements read in a field 820, an elements read in b field 830,
an elements read in ¢ field 840, an elements written to in D
field 850, and multiple entries 860 associated with fields
810-850. In other implementations, table 800 may include
less information, different information, additional informa-
tion, and/or differently arranged information.

Thread block field 810 may include a number associated
with one of the launched eight thread blocks. Elements read in
a field 820 may include the elements read into vector a, such
as elements 1:32 for thread blocks 1, 3, 5, and 7. Elements
read in b field 830 may include the elements read into vector
b, such as elements 1:32 for thread blocks 1, 2, 5, and 6.
Elements read in ¢ field 840 may include the elements read
into vector ¢, such as elements 1:32 for thread blocks 1-4.
Elements written to in D field 850 may include the elements
written in array D, such as elements 1:32, 1:32, and 1:32 for
thread block 1.

Although FIG. 7 shows example operations capable of
being performed by TCE 240, in other implementations, TCE
240 may perform fewer operations, different operations, and/
or additional operations than depicted in FIG. 7. Alterna-
tively, or additionally, one or more components of FIG. 7 may
perform one or more other tasks described as being per-
formed by one or more other components of FIG. 7.

FIG. 9 is a diagram of example core matrix operations 900
capable of being performed by TCE 240 and resources 550.
TCE 240 and resources 550 may include the features
described above in connection with, for example, one or more
of FIGS. 1-8. As shown in FIG. 9, TCE 240 may receive an
array A 910-1, an array B 910-2, and a command 920 to
initiate parallel processing. Each of array A 910-1 and array B
910-2 may include an N-dimensional (N-D) array. Command
920 may include a core matrix operation that operates on
matrices and/or N-D arrays. The core matrix operation may
include a function to perform a Cholesky factorization (chol),
a function to calculate an eigenvalue or an eigenvector (eig),
a function to perform a LU factorization (lu), a function to
perform an orthogonal-triangular decomposition (qr), a func-
tion to perform a singular value decomposition (svd), a func-

US 9,135,065 B1

17

tion to perform matrix multiplication (mtimes), a function to
solve linear systems of equations (mldivide), etc.

Using the chol function as an example, typical code would
loop over all pages of an array (A) and extract each page to
perform the Cholesky factorization as follows:

for k=1:size(A,3)

L(:,:,k)=chol(A(, :, k));

end.

In contrast, command 920 may call the chol function, and
may have the chol function loop over all pages of array A and
perform the Cholesky factorization on each ofthe pages using
the following syntax: L=chol(A). Command 920 may remove
indexing operations and the for-loop from the code, which
may make the code easier to read. Furthermore, command
920 may enable the core matrix operation to be processed in
parallel.

The core matrix operations (e.g., chol, eig, lu, qr, svd,
mtimes, and mldivide) may have well-defined behavior for
scalar, vector, and matrix inputs, and command 920 may use
those behaviors to extend the core matrix operations to sup-
port N-D array inputs. For example, it may be assumed that a
function fun denotes any one of the core matrix operations,
and that the syntax [Cl, . . ., Cm]|=fun(A, B, flagl,
flag2, ...)is well defined when A and B are matrices. I[f A and
B are N-D arrays whose sizes match, command 920 may
define the syntax [C1, . .., Cm]=tun(A, B, flagl, flag2,...)
to be the same as:

n =ndims(A);
fori 3 =size(A, 3)

fori_n =size(A, n)
[C1(:,5,i_3,...,i 1), ..., Cm(:,5i_3,..,in)] =...
fun(A(:,;,i_3,....i_n), B(:,;,i_3, ...,i_n), flagl, flag2, ...);
end

end.

As further shown in FIG. 9, based on command 920, TCE
240 may extend the function fun to support multiple N-D
array inputs, as indicated by reference numbers 930-1
through 930-M. TCE 240 may control application of the
function fun to array A 910-1 and/or array B 910-2 so that the
function fun is executed in parallel on portions of array A
910-1 and/or array B 910-2 by resources 550, as indicated by
reference number 940. Resources 550 may concurrently
execute the function fun on the portions of array A 910-1
and/or array B 910-2 to generate results 950. In one example,
each of results 950 may include a portion of an output array.
Resources 550 may provide results 950 to TCE 240, and TCE
240 may receive results 950. TCE 240 may combine results
950 into a single result (e.g., an array C 960), and may store
and/or output array C 960.

FIG. 10 is a diagram of further example core matrix opera-
tions 1000 capable of being performed by TCE 240 and
resources 550. TCE 240 and resources 550 may include the
features described above in connection with, for example, one
or more of FIGS. 1-9. As shown in FIG. 10, TCE 240 may
receive an array A 1010-1, an array B 1010-2, and a command
1020 to initiate parallel processing. Each of array A 1010-1
and array B 1010-2 may include an N-D array. Command
1020 may include a core matrix operation (e.g., chol, eig, lu,
qr, svd, mtimes, and mldivide) that operates on matrices and/
or N-D arrays.

The core matrix operations (e.g., chol, eig, lu, qr, svd,
mtimes, and mldivide) may have well-defined behavior for
scalar, vector, and matrix inputs, and command 1020 may use

20

25

30

35

40

45

50

55

60

65

18

those behaviors to extend the core matrix operations to sup-
port singleton dimension expansion. For example, it may be
assumed that a function fun denotes any one of the core
matrix operations, and that the syntax [C1, . . . , Cm]|=fun(A,
B, flagl, flag2, . ..)is well defined when A and B are matrices.
If A and B are N-D arrays such that in all dimensions their
sizes match in a particular dimension or one of them is of size
1 in the particular dimension, command 1020 may define the

syntax [C1, . .., Cm|=fun(A, B, flagl, flag2, . . .) to be the
same as:
n = max(ndims(A), ndims(B));
fori_3 = max(size(A, 3), size(B, 3))
iA_3=i3;
B 3=i3;
if size((A,3)==1)
iA_3 = 1; % Singleton dimension expansion of A in dimension 3.
end
if size((B, 3) ==1)
iB_3 =1; % Singleton dimension expansion of B in dimension 3.
end
for i_n = max(size(A, n), size(B, n))
A n=in
iBn=i_n;
if size((A, n) ==1)
iA_n =1; % Singleton dimension expansion of A in dim n.
end
if size((B, n) ==1)
iB_n=1; % Singleton dimension expansion of B in dim n.
end
[C1(:,5i 3,0 D), ..., Cm (5,50 3,0 0)] = ...
fun(A(:,:,1A_3,...,iA_n), B(;,;,iB_3, ...,iB_n), flagl, flag2, ...);
end
end.
As further shown in FIG. 10, based on command 1020,

TCE 240 may extend the function fun to support singleton
dimension expansion, as indicated by reference numbers
1030-1 through 1030-M. TCE 240 may control application of
the function fun to array A 1010-1 and/or array B 1010-2 so
that the function fun is executed in parallel on portions of
array A 1010-1 and/or array B 1010-2 by resources 550, as
indicated by reference number 1040. Resources 550 may
concurrently execute the function fun on the portions of array
A 1010-1 and/or array B 1010-2 to generate results 1050. In
one example, each of results 1050 may include a portion of an
output array. Resources 550 may provide results 1050 to TCE
240, and TCE 240 may receive results 1050. TCE 240 may
combine results 1050 into a single result (e.g., an array C
1060), and may store and/or output array C 1060.

Expressing multiple linear algebra operations in a single
line of code, such as commands 920 and 1020, may have a
major impact on the efficiency of the code. For example,
removing the for-loop from the code may enable a function
(e.g., a core matrix operation) to be easily executed in paral-
lel. Removing all indexing operations from the code may
increase execution speeds since the indexing operations do
not have to be error checked or actually executed. Also, by
removing the indexing operations from the code, a significant
number of temporaries and copy operations may be avoided.
Furthermore, supporting singleton dimension expansion may
reduce an amount of memory required for performing com-
putations. This reduction may lead to performance benefits as
less data may be transferred between memory and CPU or
GPU cores, and the resulting calculations may benefit more
from processor data caches.

In one example, command 920/1020 may include the syn-
tax L=chol(A), where a size of array A is 16-by-16-by-10000.

US 9,135,065 B1

19

Since there would be 10,000 Cholesky factorizations of
16-by-16 matrices to be performed, TCE 240 may wish to
perform the factorizations in parallel. TCE 240 may examine
a size of array A and may determine a size of the resulting
array L. For example, for a matrix of size n-by-n, the chol
function may return a matrix of the same size. Therefore, the
size of the pages of array I may equal the size of the pages of
array A. Since there is only one input to the function chol,
TCE 240 need not utilize singleton dimension expansion, and
each page of array A may yield exactly one page of array L.
Therefore, array [. may have the same number of pages as
array A, and the size of array [may be the same as the size of
array A. TCE 240 may pre-allocate the size of array L to be
16-by-16-by-1000.

On shared memory architectures, all of the data associated
with array A and array L may be stored in memory that can be
addressed by all of the resources performing the computa-
tions. If Aptr and Lptr are double pointers in C++ that store
data for array A and array L, respectively, a p-th page of array
A may be stored in 256 elements starting at the addresses of
Aptr[px16x16] and Lptr[Px16x16]. Therefore, the function
cholin C++ may read from and write to pages A(:,:,k) and L.(:,
:, k) directly without requiring any temporaries or unneces-
sary copying of data. Such an arrangement may be used with
resources, such as a single CPU with one or more cores;
multiple CPUs, each with one or more cores, that use the same
address space; a single GPU; multiple GPUs when they use
shared or virtual shared memory; etc.

If a Cholesky factorization is to be applied to n-by-n matri-
ces that take, as input, a page size n, and pointers to the input
and the output matrices are matrix_cholesky(size_t n, double
const * const in, double * const out), an N-D Cholesky fac-
torization of n-by-n-by-p arrays may be implemented, in par-
allel forallkin1,...,p,as:

call matrix_cholesky(n, &Aptr[n*n*k], &Lptr[n*n*k]).
Ifthe page size n is sufficiently large that there is benefit from
performing the Cholesky factorization of the pages in paral-
lel, TCE 240 may perform the Cholesky factorization in par-
allel. This may occur when an input array does not have very
many pages but each page is relatively large (e.g., if array A is
of size 512-by-512-by-4).

There may be a number of options for performing the
multiple linear algebra operations on a GPU. As described
above, an N-D Cholesky factorization of n-by-n-by-p arrays
may be implemented, in parallel forallkin 1, ..., p, as:

call matrix_cholesky(n, &Aptr[n*n*k], &Lptr[n*n*k]).
The statement “for allkin 1, . . ., p” may be executed as a
literal loop on a CPU or as a function call from the CPU to a
GPU that has an implicit “for all” built into it. If the routine
matrix_cholesky is designed to be executed in its entirety in
one step on the GPU, there may be multiple ways in which
that could take place. For example, a routine may be written
to use exactly one thread for each value of k. Each thread may
work on a k-th factorization independently or each thread
may collaborate with other threads on the factorization. In
this case, the CPU may launch one kernel with a total of p
threads. The “for all k” in the code may be handled by a GPU
kernel launch system. Such an arrangement may be particu-
larly advantageous when the page size n is very small and p is
large, such as for linear algebra operations on one million
2-by-2 matrices. Alternatively, or additionally, a routine may
be written to use one block of threads for each value of k. In
this case, the CPU may launch one kernel with a total of p
blocks of threads. The “for all k” in the code may be handled
by the GPU kernel launch system. This arrangement may be
advantageous when the page size n is intermediate in size,
such as when n is in a range of 16 to 256.

10

15

20

25

30

35

40

45

50

55

60

65

20

Alternatively, or additionally, a routine may be written to
launch one kernel for each value of k. In this case, the CPU
may launch p kernels. The kernels may be independent of one
another, and the GPU may execute all of the values of k
independently of one another. This arrangement may be
advantageous when the page size n is sufficiently large that
the linear algebra operation on a single page offers sufficient
parallelism to utilize the entire GPU, such as when n is greater
than a threshold, such as 256.

Ifthe routine matrix_cholesky is designed to execute partly
on a CPU and partly on a GPU, it may be beneficial to use
multiple threads on the CPU to execute the “for all k” in the
code. This may lead to one or more kernel launches for each
value of k. Another possibility may be to implement page-
wise operations by calling specialized library functions that
are built for performing multiple linear algebra operations
concurrently on the GPU.

When performing linear algebra on distributed arrays, TCE
240 may perform the following steps. If a number of pages is
equal to or larger than a number of resources, TCE 240 may
instruct the resources to perform the linear algebra operation
independently of one another. If necessary, TCE 240 may
redistribute the input arrays so that for each page in the output
array, at least one resource has all the pages of the input arrays
that are involved in the computations for that output array.
This may ensure that each resource can perform its compu-
tations independently of the other resources. Thus, the
resources’ N-D linear algebra operations may follow the steps
described above for shared memory architectures and the
execution on CPUs and GPUs.

If the number of pages is smaller than the number of
resources, TCE 240 may instruct the resources to collaborate
to perform the linear algebra operations. For each page in the
output array, the resources may collectively compute the
result as if this were written as a serial for loop, except that the
resource may set up a workspace and other temporary vari-
ables once for all of the pages that are to be computed. The
resources may also use offsets into the input and output arrays
when performing the operations rather than performing cop-
ies to extract and insert input and output data.

In one example implementation, TCE 240 may utilize the
following syntax to calculate a singleton dimension expan-
sion of two input arrays (A and B).

% Show how the arrays A and B would be expanded via singleton
% dimension expansion and how each page of the output array
% would be derived from a page in A and a page in B.
nd = max([ndims(A), ndims(B)]);
Asize = zeros(1, nd);
Bsize = zeros(1, nd);
%Csize = zeros(1, nd);
for dim = 1:nd
Asize(dim) = size(A, dim);
Bsize(dim) = size(B, dim);
end
maxSize = max([Asize; Bsize]);
numPagesOut= prod(maxSize(3:end));
fprintf(*Output has %d pages\n’, numPagesOut);
for k = 1:numPagesOut
outputIndex = ones(1, nd);
outputIndex(1:2) = NaN;% We will never use these
r=k-1;
for dim = 3:nd
ifr>0
outputIndex (dim) = rem(r, maxSize(dim)) + 1;
1 = floor(r/maxSize(dim));
end
end
Aindex = min([outputIndex ; Asize]);
Bindex = min([outputIndex ; Bsize]);

US 9,135,065 B1

21

-continued

fprintf(*page = %d is Output(%s), calculated from A(%s) and
B(%s)\n’, ...
k, printIndex(outputlndex), printIndex(Aindex),
printIndex(Bindex));
end
end
function str = printIndex(index)
% Translate an index of the form [a, b, ¢, d] into
% the string :, 1, ¢, d’.
nd = length(index);
¢ = cellfun(@num?2str, num2cell(index), ‘UniformOutput’, false);
e(1:2)= {);
d = cat(1, ¢, [repmat({*,’}, 1,nd = 1), {*’}]);
str = [d{:}];
end.

Executing this syntax for input arrays of size 3-by-3-by-4-
by-1 and 3-by-3-by-1-by-3, may generate eight pages:
page=1 is Output(:,:,1,1), calculated from A(:,:,1,1) and B(:,:,
1,1); page=2 is Output(:,:,2,1), calculated from A(:,:,2,1) and
B(:,:,1,1); page=3 is Output(:,:,3,1), calculated from A(:,:,3,
1) and B(:,:,1,1); page=4 is Output(:,:,4,1), calculated from
A(:,:,4,1)and B(:,:,1,1); page=5 is Output(:,:,1,2), calculated
from A(:,:,1,1) and B(:,:,1,2); page=6 is Output(:,:,2,2), cal-
culated from A(:,:,2,1) and B(:,:,1,2); page=7 is Output(:,:,3,
2), calculated from A(:,:,3,1) and B(:,:,1,2); and page=8 is
Output(:,:,4,2), calculated from A(:,:,4,1) and B(:,:,1,2).

Although FIGS. 9 and 10 show example operations
capable of being performed by TCE 240, in other implemen-
tations, TCE 240 may perform fewer operations, different
operations, and/or additional operations than depicted in
FIGS. 9 and 10. Alternatively, or additionally, one or more
components of FIGS. 9 and 10 may perform one or more
other tasks described as being performed by one or more other
components of FIGS. 9 and 10.

Example Processes

FIG. 11 is a flow chart of an example process 1100 for
partitioning and parallel processing of a multidimensional
array. In one implementation, process 1100 may be per-
formed by client device 210/TCE 240. Alternatively, or addi-
tionally, process 1100 may be performed by another device or
a group of devices separate from or including client device
210/TCE 240.

As shown in FIG. 11, process 1100 may include receiving
a command to initiate parallel processing, the command
including a function, an array, and dimension(s) by which to
partition the array (block 1110), and partitioning the array
along the dimension(s) to create multiple blocks of the array
(block 1120). For example, in an implementation described
above in connection with FIG. 6, TCE 240 may receive com-
mand 610 to initiate parallel processing, such as a slicefun
command. Command 610 may include a dimension (‘Dim’)
parameter with a value of one, and a block size (‘Blocksize”)
parameter with a value of three. Thus, command 610 may
specify that array A 620 is to be divided along a first dimen-
sion with a block size of three. Furthermore, command 610
may specify an output (‘Output’) parameter with a value of
{[20, 30]}, which may indicate that the output (e.g., array B
660) is to be a 20-by-30 array. TCE 240 may determine that
each resource 550 is to process one block of array A 620.
Therefore, TCE 240 may determine that array A 620 is to be
divided into four blocks 630, where each block 630 may
include three rows of array A 620. However, since array A
includes ten rows, TCE 240 may pad array A with two rows to

10

15

35

45

22

generate array A 620 with two extrarows. The extra rows may
be empty (i.e., may not contain data).

As further shown in FIG. 11, process 1100 may include
controlling application of the function to the multiple blocks
to cause the function to execute in parallel on at least two of
the blocks (block 1130). For example, in an implementation
described above in connection with FIG. 6, each block 630
may be provided to a separate resource 550 in parallel. A first
block 630 may be provided to resource 550-1 to process rows
1to 3 of array A 620, a second block 630 may be provided to
resource 550-2 to process rows 4 to 6 of array A 620, a third
block 630 may be provided to resource 550-3 to process rows
710 9 of array A 620, and a fourth block 630 may be provided
to resource 550-4 to process row 10 of array A 620.

Returning to FIG. 11, process 1100 may include receiving
results of the parallel execution of the at least two blocks
(block 1140), combining the results into a single result (block
1150), and outputting and/or storing the single result (block
1160). For example, in an implementation described above in
connection with FIG. 6, resources 550 may execute the first
through fourth blocks 630 in parallel, as indicated by refer-
ence number 640, to produce results 650. In order for the
output parameter (e.g., {[20, 30]}) to be satisfied, the function
fun may need to yield a 20-by-8 array based on execution of
the first block 630, a 20-by-8 array based on execution of the
second block 630, a 20-by-8 array based on execution of the
third block 630, and a 20-by-6 array based on execution of the
fourth block 630. The resulting arrays of results 650 may be
provided to TCE 240, and TCE 240 may combine results 650
into a single result, such as a 20-by-30 array B 660. In one
example, TCE 240 may concatenate arrays of results 650 to
generate array B 660. TCE 240 may store and/or output array
B 660.

FIG. 12 is a flow chart of an example process 1200 for
parallel processing elements of a multidimensional array. In
one implementation, process 1200 may be performed by cli-
ent device 210/TCE 240. Alternatively, or additionally, pro-
cess 1200 may be performed by another device or a group of
devices separate from or including client device 210/TCE
240.

As shown in FIG. 12, process 1200 may include receiving
a command to initiate parallel processing, the command
including a function and an array with multiple elements
(block 1210), and invoking the function once for each ele-
ment of the array with singleton dimension expansion (block
1220). For example, in an implementation described above in
connection with FIG. 7, TCE 240 may receive command 710
to initiate parallel processing, such as an arrayfun command.
In one example, for the syntax B=arrayfun(fun, A), the array-
fun command may invoke a function fun once for each ele-
ment of an array A, with singleton dimension expansion, and
may return the results to an array B.

As further shown in FIG. 12, process 1200 may include
controlling application of the function to the multiple ele-
ments to cause the function to execute in parallel on at least
two of the elements (block 1230). For example, in an imple-
mentation described above in connection with FIG. 7, TCE
240 may invoke the function fun for element a,,, element
a,,, ..., clement ay;, and may provide the invocations of the
function fun to resources 550. TCE 240 may provide the
invocation of the function fun for element a,; to resource
550-1, may provide the invocation of the function fun for
element a,, to resource 550-2, etc. Resources 550 may
execute, in parallel, the invocations of the function fun for the
elements of array A 720, as indicated by reference number
730.

US 9,135,065 B1

23

Returning to FIG. 12, process 1200 may include receiving
results of the parallel execution of the at least two elements
(block 1240), combining the results into a single result (block
1250), and outputting and/or storing the single result (block
1260). For example, in an implementation described above in
connection with FIG. 7, the execution of the function fun by
resources 550 may generate nine results 740 (e.g., one result
740 for each element of array A 720). In one example, each
result 740 may include an element of an output array.
Resources 550 may provide results 740 to TCE 240, and TCE
240 may receive results 740. TCE 240 may combine results
740 into a single result (e.g., output array B 750), and may
store and/or output array B 750.

FIG. 13 is a flow chart of an example process 1300 for
parallel processing of a multidimensional array using core
matrix operations. In one implementation, process 1300 may
be performed by client device 210/TCE 240. Alternatively, or
additionally, process 1300 may be performed by another
device or a group of devices separate from or including client
device 210/TCE 240.

As shown in FIG. 13, process 1300 may include receiving
a command to initiate parallel processing, the command
including a core matrix operation function and an N-D array
(block 1310), and extending the function to support multiple
N-D array inputs and/or singleton dimension expansion
(block 1320). For example, in an implementation described
above in connection with FIGS. 9 and 10, TCE 240 may
receive array A 910-1, array B 910-2, and command 920 to
initiate parallel processing. Each of array A 910-1 and array B
910-2 may include an N-D array. Command 920 may include
a core matrix operation that operates on matrices and/or N-D
arrays. The core matrix operation may include a function to
perform a Cholesky factorization (chol), a function to calcu-
late an eigenvalue or an eigenvector (eig), a function to per-
form a LU factorization (lu), etc. Based on command 920,
TCE 240 may extend the function fun to support multiple
N-D array inputs, as indicated by reference numbers 930-1
through 930-M. Based on command 1020, TCE 240 may
extend the function fun to support singleton dimension
expansion, as indicated by reference numbers 1030-1 through
1030-M.

As further shown in FIG. 13, process 1300 may include
controlling application of the function to the N-D array to
cause the function to execute in parallel on at least two por-
tions of the N-D array (block 1330). For example, in an
implementation described above in connection with FIG. 9,
TCE 240 may control application of the function fun to array
A 910-1 and/or array B 910-2 so that the function fun is
executed in parallel on portions of array A 910-1 and/or array
B 910-2 by resources 550, as indicated by reference number
940. Resources 550 may concurrently execute the function
fun on the portions of array A 910-1 and/or array B 910-2 to
generate results 950. In one example, each of results 950 may
include a portion of an output array.

Returning to FIG. 13, process 1300 may include receiving
results of the parallel execution of the at least two portions of
the N-D array (block 1340), combining the results into a
single result (block 1350), and outputting and/or storing the
single result (block 1360). For example, in an implementation
described above in connection with FIG. 9, resources 550
may provide results 950 to TCE 240, and TCE 240 may
receive results 950. TCE 240 may combine results 950 into a
single result (e.g., an array C 960), and may store and/or
output array C 960.

CONCLUSION

Systems and/or methods described herein may enable a
TCE to re-write code so that operations with small vectors

40

45

50

65

24

and/or matrices may be executed concurrently. This may
enable the TCE to perform multi-threaded or parallel execu-
tion of the operations.

The foregoing description of implementations provides
illustration and description, but is not intended to be exhaus-
tive or to limit the implementations to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from practice of the
implementations.

For example, while series of blocks have been described
with regard to FIGS. 11-13, the order of the blocks may be
modified in other implementations. Further, non-dependent
blocks may be performed in parallel.

It will be apparent that example aspects, as described
above, may be implemented in many different forms of soft-
ware, firmware, and hardware in the implementations illus-
trated in the figures. The actual software code or specialized
control hardware used to implement these aspects should not
be construed as limiting. Thus, the operation and behavior of
the aspects were described without reference to the specific
software code—it being understood that software and control
hardware could be designed to implement the aspects based
on the description herein.

Further, certain portions of the implementations may be
implemented as a “component” that performs one or more
functions. This component may include hardware, such as a
processor, an application-specific integrated circuit (ASIC),
ora field-programmable gate array (FPGA), ora combination
of hardware and software.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
the implementations. In fact, many of these features may be
combined in ways not specifically recited in the claims and/or
disclosed in the specification. Although each dependent claim
listed below may directly depend on only one other claim, the
disclosure of the implementations includes each dependent
claim in combination with every other claim in the claim set.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential to the imple-
mentations unless explicitly described as such. Also, as used
herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on” is
intended to mean “based, at least in part, on” unless explicitly
stated otherwise.

What is claimed is:

1. A device comprising:

one or more processors to:

receive a command to initiate parallel processing,
the command including:
an indication of a function that is to be performed in
connection with the parallel processing, and
a reference to a multidimensional array to which
the function is to be applied,
the multidimensional array including at least
three dimensions;
determine whether the command includes an argument
indicating one or more dimensions, of the at least
three dimensions, by which the multidimensional
array is to be partitioned;
selectively partition, based on determining whether the
command includes the argument, the multidimen-
sional array, along the one or more dimensions or
along a last non-singleton dimension of the at least
three dimensions, to divide the multidimensional
array into a plurality of blocks,

US 9,135,065 B1

25

the multidimensional array being partitioned along
the one or more dimensions when the command
includes the argument,

the multidimensional array being partitioned along
the last non-singleton dimension when the com-
mand does not include the argument, and

each of the plurality of blocks representing a subset of
the multidimensional array; and

control application of the function to the plurality of

blocks to cause the function to be applied in parallel to

at least two blocks of the plurality of blocks.

2. The device of claim 1, where the command further
includes a reference to a second array and, when partitioning
the multidimensional array, the one or more processors are
further to:

perform singleton dimension expansion on the second

array when a dimension of the second array is unequal to
a dimension of the multidimensional array.

3. The device of claim 1, where, when determining whether
the command includes the argument, the one or more proces-
sors are to:

determine that the command includes an indication of the

one or more dimensions by which the multidimensional

array is to be partitioned,

where the indication is received as a default value, and
set the indication of the one or more dimensions as the last

non-singleton dimension of the multidimensional array.

4. The device of claim 1, where the command and the
function are provided using a dynamically typed program-
ming language.

5. The device of claim 1, where, when determining whether
the command includes the argument, the one or more proces-
sors are to:

determine that the command includes an indication of all

dimensions of the at least three dimensions, and
where, when selectively partitioning the multidimensional
array, the one or more processors are to:
partition the multidimensional array to cause each of the
plurality of blocks to include a single element of the
multidimensional array.

6. The device of claim 1, where, when controlling applica-
tion of the function, the one or more processors are further to:

transmit the function or a reference to the function to a

plurality of resources,

transmit at least one different block of the plurality of

blocks to each of the plurality of resources,

receive results, from the plurality of resources, relating to

the application of the function to the at least one different
block of the plurality of blocks, and

store the received results.

7. A method, comprising:

receiving a command to initiate parallel processing,

the command including:
an indication of a function that is to be performed in
connection with the parallel processing,
a reference to a multidimensional array to which the
function is to be applied,
the multidimensional array including at least three
dimensions, and
the receiving being performed by a device;
determining whether the command includes an argu-
ment indicating one or more dimensions, of the at
least three dimensions, by which the multidimen-
sional array is to be partitioned,
the determining being performed by the device;
selectively partitioning, based on the determining, the mul-
tidimensional array, along the one or more dimensions

10

20

25

35

40

45

50

55

60

65

26

or along a last non-singleton dimension of the at least

three dimensions, to divide the multidimensional array

into a plurality of blocks,

the multidimensional array being partitioned along the
one or more dimensions when the command includes
the argument,

the multidimensional array being partitioned along the
last non-singleton dimension when the command
does not include the argument,

each of the plurality of blocks representing a subset of
the multidimensional array, and

the selectively partitioning being performed by the
device; and

controlling application of the function to the plurality of

blocks to cause the function to be applied in parallel to at
least two blocks of the plurality of blocks,
the controlling being performed by the device.

8. The method of claim 7, where the command further
includes a reference to a second array, the method further
comprising:

performing singleton dimension expansion on the second

array when a dimension of the second array is unequal to
a dimension of the multidimensional array.
9. The method of claim 7, where the determining includes:
determining that the command includes an indication of a
default value by which the multidimensional array is to
be partitioned, and
determining to partition the multidimensional array along
the last non-singleton dimension of the multidimen-
sional array based on the command including the indi-
cation of the default value.

10. The method of claim 7, where the argument includes an
indication of all dimensions of the multidimensional array,
and

where selectively partitioning the multidimensional array

includes:

partitioning the multidimensional array to cause each of
the plurality of blocks to include a single element of
the multidimensional array.

11. The method of claim 7, where, when controlling appli-
cation of the function, the method further comprises:

transmitting the function or a reference to the function to a

plurality of resources;

transmitting at least one different block of the plurality of

blocks to each of the plurality of resources;

receiving results, from the plurality of resources, relating to

the application of the function to the at least one different
block of the plurality of blocks;

combining the results into a single result; and

storing the single result.

12. One or more non-transitory computer-readable media
storing instructions, the instructions comprising:

one or more instructions that, when executed by a proces-

sor of a device, cause the processor to:
receive a command to initiate parallel processing,
the command including:
an indication of a function that is to be performed in
connection with the parallel processing, and
a reference to a multidimensional array to which
the function is to be applied, the multidimen-
sional array including at least three dimensions;
determine whether the command includes an argument
indicating one or more dimensions, of the at least
three dimensions, by which the multidimensional
array is to be partitioned;
selectively partition, based on determining whether the
command includes the argument, the multidimen-

US 9,135,065 B1

27

sional array, along the one or more dimensions or
along a non-singleton dimension of the at least three
dimensions, to divide the multidimensional array into
a plurality of blocks,
each of the plurality of blocks representing a subset of
the multidimensional array; and

control application of the function to the plurality of
blocks to cause the function to be applied in parallel to
at least two blocks of the plurality of blocks.

13. The one or more non-transitory computer-readable
media of claim 12, where the command further includes a
reference to a second array, and

where the one or more instructions to selectively partition

the multidimensional array include:
one or more instructions that, when executed by the
processor, cause the processor to:
perform singleton dimension expansion on the second
array when a dimension of the second array is
unequal to a dimension of the multidimensional
array.

14. The one or more non-transitory computer-readable
media of claim 12, where the command includes the argu-
ment and the argument includes an indication of all dimen-
sions of the multidimensional array, and

where the one or more instructions to selectively partition

the multidimensional array include:
one or more instructions that, when executed by the
processor, cause the processor to:
partition the multidimensional array such that each of
the plurality of blocks includes a single element of
the multidimensional array.

15. The one or more non-transitory computer-readable
media of claim 12, where the one or more instructions to
control the application of the function include:

one or more instructions that, when executed by the pro-

cessor, cause the processor to:
transmit the function or a reference to the function to a
plurality of resources,
transmit at least one different block of the plurality of
blocks to each of the plurality of resources,
receive results, from the plurality of resources, relating
to the application of the function to the at least one
different block of the plurality of blocks, and
store the received results.
16. A device comprising:
one or more processors to:
receive a command to initiate parallel processing,
the command including:
an indication of a function that is to be performed in
connection with the parallel processing, and
a reference to an array that includes a plurality of
elements, the array including at least three
dimensions;
determine whether the command includes an argument
indicating one or more dimensions, of the at least
three dimensions, by which the array is to be parti-
tioned;
partition, based on determining whether the command
includes the argument, the array along the one or more
dimensions or along a non-singleton dimension of the
array,
the array being partitioned along the one or more
dimensions when the command includes the argu-
ment, and
the array being partitioned along the non-singleton
dimension when the command does not include the
argument;

10

15

20

25

30

35

40

45

50

55

60

65

28

invoke the function for each element of the plurality of
elements of the array, with singleton dimension
expansion;

control application of the function to the plurality of
elements to cause the function to be executed in par-
allel on at least two elements of the plurality of ele-
ments;

receive results of the parallel execution of the at least two
elements of the plurality of elements;

combine the results into a single result; and

store the single result.

17. The device of claim 16, where, when controlling appli-
cation of the function, the one or more processors are further
to:

transmit the function or a reference to the function to a

plurality of resources,

transmit a different element of the plurality of elements to

each of the plurality of resources, and

receive the results, from the plurality of resources, relating

to the application of the function to the different ele-
ments of the plurality of elements.

18. The device of claim 16, where the function includes a
core matrix operation function, and where the one or more
processors are further to:

extend the function to support a plurality of multidimen-

sional array inputs and singleton dimension expansion.

19. A method, comprising:

receiving a command to initiate parallel processing,

the command including:
an indication of a function that is to be performed in
connection with the parallel processing, and
a reference to an array that includes a plurality of
elements,
the array including at least three dimensions, and
the receiving the command being performed by a
device;
determining whether the command includes an argu-
ment indicating one or more dimensions, of the at
least three dimensions, by which the array is to be
partitioned,
the determining being performed by the device;
partition, based on the determining, the array along the
one or more dimensions or along a last non-singleton
dimension of the array,
the partitioning being performed by the device,
the array being partitioned along the one or more
dimensions when the command includes the argu-
ment, and
the array being partitioned along the last non-single-
ton dimension when the command does not include
the argument;
invoking the function for each element, of the plurality of
elements of the array, with singleton dimension expan-
sion,

the invoking being performed by the device;

controlling application of the function to the plurality of

elements to cause the function to be executed in parallel
on at least two elements of the plurality of elements,
the controlling being performed by the device;

receiving results of the parallel execution of the at least two

elements of the plurality of elements,

the receiving the results being performed by the device;

combining the results into a single result,

the combining being performed by the device; and

storing the single result in a memory associated with the

device,

the storing being performed by the device.

US 9,135,065 B1

29

20. The method of claim 19, where the controlling the
application of the function includes:

transmitting the function or a reference to the function to a

plurality of resources;

transmitting a different element of the plurality of elements

to each of the plurality of resources; and

receiving the results, from the plurality of resources, relat-

ing to the application of the function to the different
elements of the plurality of elements.

21. The method of claim 19, where, when the function
includes a core matrix operation function, the method further
comprises:

extending the function to support a plurality of multidi-

mensional array inputs and singleton dimension expan-
sion.

10

15

30

